Abstract

Sulfide-containing wastewater, characterized by its foul odor, corrosiveness, and toxicity, can endanger human health. Fluidized-bed homogeneous crystallization (FBHC) avoids the excessive sludge production commonly associated with conventional chemical precipitation methods. In this study, FBHC is used to treat sulfur-containing synthetic wastewater. Furthermore, nickel-containing wastewater was utilized as a precipitant in the system, hence the advantage of simultaneous sulfur and nickel removal from the wastewater. The operating parameters, including pH, a precipitant dosage of [Ni2+]0/[S2−]0, and cross-sectional surface loading (LS, kg/m2h) are optimized. The optimum operating conditions of pH 9.8 ± 0.3, [Ni2+]0/[S2−]0 = 0.8, and LS = 1.5 kg/m2h results in total sulfur removal (TR) of 95.7% and crystallization ratio (CR) of 94.8%. The effect of organic compounds (acetic acid, oxalic acid, EDTA, and citric acid) and inorganic ions (NO3−, CO32−, PO43−, F−, and Cl−) on the nickel sulfide granulation process was discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.