Abstract

The oxidation of sulfide was studied in recombinant bacteria expressing the sulfide–quinone reductase gene (sqr) from Rhodobacter capsulatus. Sulfide was oxidized by the Escherichia coli strain W3110 harboring the sqr construct (pKKSQ) under anaerobic conditions and nitrate was utilized as a terminal electron acceptor. Following the oxidation, elemental sulfur and nitrite were produced as the final reaction products. This activity was retained in the membrane preparation and was sensitive towards antimycin A, stigmatellin, and azide. As a consequence of the ubiquinone deficiency, this activity was markedly decreased. In additon, by recovery of ubiquinone, the oxidation was also restored to rates similar to those of the wild-type strain. These results indicate that sulfide oxidation in this strain occurs via the quinone pool in vivo, and that this sulfide–quinone reductase (SQR) in particular utilizes ubiquinone as a more appropriate electron acceptor than menaquinone or demetylmenaquinone. To our knowledge, this is the first study to show a direct interaction between SQR and ubiquinone in cells. When expressed in Pseudomonas putida and Rhizobium meliloti, the SQR conferred on these organisms the ability to oxidize sulfide as well as E. coli in vivo.Key words: SQR, quinone, anaerobic sulfide oxidation, heterogeneous expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call