Abstract

Here, we report the reactivity of copper(I) clusters toward sulfide ions; these sulfide copper(I) clusters have attracted much attention due to their relevance to biologically active centers and their fascinating structural and photophysical properties. Treatment of the CuI 3RhIII 2 pentanuclear complex, [Cu3{Rh(aet)3}2]3+ (aet=2-aminoethanethiolate), in which a {CuI 3}3+ cluster moiety is bound by two fac-[Rh(aet)3] metalloligands, with NaSH in water produced the CuI 6RhIII 4 decanuclear complex, [Cu6S{Rh(aet)3}4]4+, accompanied by the dimerization of [Cu3{Rh(aet)3}2]3+ and the incorporation of a sulfide ion at the center. While similar treatment using the analogous CuI 3IrIII 2 complex with fac-[Ir(aet)3] metalloligands, [Cu3{Ir(aet)3}2]3+, produced the isostructural CuI 6IrIII 4 decanuclear complex, [Cu6S{Ir(aet)3}4]4+, the use of the CuI 3RhIII 2 complex with fac-[Rh(apt)3] metalloligands, [Cu3{Rh(apt)3}2]3+ (apt=3-aminopropanethiolate), resulted in the removal of one of the three CuI atoms from {CuI 3}3+ to afford the CuI 2RhIII 2 tetranuclear complex, [Cu2{Rh(apt)3}2]2+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call