Abstract

The growth of gold nanorods can be arrested at intermediate stages by treatment with Na(2)S, providing greater control over their optical resonances. Nanorods prepared by the seeded reduction of AuCl(4) in aqueous cetyltrimethylammonium bromide solutions in the presence of AgNO(3) typically exhibit a gradual blueshift in longitudinal plasmon resonance, over a period of hours to days. This "optical drift" can be greatly reduced by adding millimolar concentrations of Na(2)S to quench nanorod growth, with an optimized sulfur:metal ratio of 4:1. The sulfide-treated nanorods also experience a marked redshift as a function of Na(2)S concentration to produce stable plasmon resonances well into the near-infrared. Sulfide treatment permitted a time-resolved analysis of nanorod growth by transmission electron microscopy, revealing two distinct periods: an initial growth burst (t < 15 min) that generates dumbbell-shaped nanorods with flared ends and a slower phase (t > 30 min) favoring growth around the midsection, leading to nanorods with the more familiar oblate geometry. The blueshift in plasmon resonance that accompanies the dumbbell-to-oblate shape transition correlates more strongly with changes in the length-to-midsection (L/D(1)) ratio rather than the length-to-end width (L/D(2)) ratio, based on the empirical relationship introduced by El-Sayed and co-workers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.