Abstract

Iron minerals in nature are pivotal hosts for heavy metals, significantly influencing their geochemical cycling and eventual fate. It is generally accepted that, vivianite, a prevalent iron phosphate mineral in aquatic and terrestrial environments, exhibits a limited capacity for adsorbing cationic heavy metals. However, our study unveils a remarkable phenomenon that the synergistic interaction between sulfide (S2−) and vivianite triggers an unexpected sulfidation−reoxidation process, enhancing the immobilization of heavy metals such as cadmium (Cd), copper (Cu), and zinc (Zn). For instance, the combination of vivianite and S2− boosted the removal of Cd2+ from the aqueous phase under anaerobic conditions, and ensured the retention of Cd stabilized in the solid phase when shifted to aerobic conditions. It is intriguing to note that no discrete FeS formation was detected in the sulfidation phase, and the primary crystal structure of vivianite largely retained its integrity throughout the whole process. Detailed molecular-level investigations indicate that sulfidation predominantly targets the Fe(II) sites at the corners of the PO4 tetrahedron in vivianite. With the transition to aerobic conditions, the exothermic oxidation of CdS and the S sites in vivianite initiates, rendering it thermodynamically favorable for Cd to form multidentate coordination structures, predominantly through the Cd-O-P and Cd-O-Fe bonds. This mechanism elucidates how Cd is incorporated into the vivianite structure, highlighting a novel pathway for heavy metal immobilization via the sulfidation−reoxidation dynamics in iron phosphate minerals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call