Abstract

The sulfidation and regeneration properties of lignite char-supported iron-based sorbent for coke oven gas (COG) desulfurization prepared by mechanical stirring (MS), ultrasonic assisted impregnation (UAI), and high pressure impregnation (HPI) were investigated in a fixed-bed reactor. During desulfurization, the effects of process parameters on sulfidation properties were studied systematically. The physical and chemical properties of the sorbents were analyzed by X-ray diffraction (XRD), scanning electron microscope coupled with energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared (FTIR) and BET surface area analysis. The results of desulfurization experiments showed that high pressure impregnation (HPI) enhanced the sulfidation properties of the sorbents at the breakthrough time for char-supported iron sorbents. HPI method also increased the surface area and pore volume of sorbents. Sulfur capacity of sorbents was enhanced with increasing sulfidation temperatures and reached its maximum value at 400 °C. It was observed that the presence of steam in coke oven gas can inhibit the desulfurization performance of sorbent. SO2 regeneration of sorbent resulted in formation of elemental sulfur. HPIF10 sorbent showed good stability during sulfide-regeneration cycles without changing its performance significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call