Abstract

Sulfidation treatment is an effective method of improving the catalytic performance of zero-valent iron (ZVI). Here, we prepared sulfidated, micro-sized ZVI (S-mZVI) using ball milling technology to activate persulfate (PS) with the goal of oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged OPP-contaminated soil columns. Energy dispersive spectroscopy (EDS), X-ray powder diffraction (XRD) and X-ray photoelectron spectrometry (XPS) analyses uncovered the formation of Fe2O3, FeOOH, FeS and FeS2 in the S-mZVI prepared by ball milling with different proportions of elemental S powder to make micro-sized ZVI particles. The presence of sulfur can regulate the morphology of S-mZVI with a dispersed and spherical shape, and it can improve the activation performance of PS. In aqueous solution, 11.2 mg of S-mZVI activated 2.5 mM PS (S-mZVI-PS) with an S/Fe molar ratio of 0.100, and it was the best at activating PS, leading to oxidation-rate constants of 0.030 s−1 for 10 mg/L phorate and 0.026 s−1 for 10 mg/L terbufos, which were much greater than those of the other S-mZVI and mZVI. The results of the soil column experiment showed that the PS, which had a low consumption for the total dosage, achieved higher degradation percentages among the three OPPs in the S-mZVI-PS treatment than those in the mZVI-PS treatment over 120 h, with the best performance achieved by oxidizing 69.7% phorate, 48.0% terbufos and 60.6% aminoparathion. The effluent concentrations of the three OPPs in the S-mZVI-PS treatment were significantly lower than those in the mZVI-PS treatment, while dissolved total iron and Fe(II) displayed the opposite results. These results indicate that S-mZVI prepared by ball milling can effectively activate PS and be applied to remediate OPP-contaminated soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call