Abstract

Purified basolateral membrane vesicles (BLMV) were prepared from lobster hepatopancreas by osmotic disruption and discontinuous sucrose gradient centrifugation. Radiolabeled sulfate uptake was stimulated by 10 mM intravesicular oxalate compared with gluconate-loaded vesicles. Sulfate/oxalate exchange was not affected by transmembrane valinomycin-induced potassium diffusion potentials (inside negative or inside positive), suggesting electroneutral anion transport. Sulfate uptake was not stimulated by the similar carboxylic anions formate, succinate, oxaloacetate, or ketoglutarate. Sulfate influx occurred by at least one saturable Michaelis-Menten carrier system [apparent Km = 6.0 +/- 1.7 mM; maximum flux (Jmax) = 382.3 +/- 37.0 pmol.mg protein-1 x 7 s-1]. Sulfate/oxalate exchange was significantly reduced by the anion antiport inhibitors 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid but was not affected by bumetanide or furosemide. The possible physiological role of this exchange mechanism in anion/sulfate transport across the crustacean hepatopancreas is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call