Abstract

In this study, three sulfated polysaccharides (S-RSP1–2, S-RSP1–4 and S-RSP1–8) from Rhodiola sachalinensis were produced by chlorosulfonic acid-pyridine method. d-gal was used to develop an oxidative stress model in the mouse embryonic fibroblast cell line NIH 3T3. Effects of the three sulfated polysaccharides on d-gal-induced oxidative stress were investigated. The results showed that S-RSP1–4 improved the viability of the d-gal-induced oxidative stress in NIH 3T3 cells. The sulfated polysaccharides were found to have a better protective effect against d-gal-induced oxidative stress as compared to the native polysaccharide. Scanning electronmicroscopy also showed a significant change in the surface morphology of sulfated polysaccharides. In addition, the sulfated polysaccharides had noticeable DPPH radical-scavenging activity. In summary, our results demonstrated that d-gal was able to induce oxidative stress in NIH 3T3 cells, and sulfated group might play an important role in resistance to d-gal-induced oxidative damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.