Abstract

Sulfated polysaccharides potently inhibit the infectivity of herpes simplex virus (HSV) in cultured cells. In this study, we have analyzed sulfated xylogalactofucan and alginic acid containing fractions generated from Laminaria angustata, a marine alga. The xylogalactofucan that has apparent molecular mass of 56±5kDa and unusually low sulfate content contains, inter alia, 1,3-, 1,4- and 1,2-linked fucopyranosyl residues. The algin (molecular mass: 32±5kDa) contains gulo- (55.5%) and mannuronic (44.5%) acid residues. Introduction of sulfate groups enhanced the macromolecules capability to inhibit the infection of cells by HSV-1. The 50% inhibitory concentration (IC50) values of these macromolecules against HSV-1 were in the range of 0.2–25μgml−1 and they lacked cytotoxicity at concentrations up to 1000μgml−1. The sulfate content appeared to be an important hallmark of anti-HSV-1 activity. Our results suggest the feasibility of inhibiting HSV attachment to cells by direct interaction of polysaccharides with viral particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call