Abstract

The adhesive glycoproteins laminin, thrombospondin, and von Willebrand factor bind specifically and with high affinity to sulfatides, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The three proteins differ, however, in the inhibition of their binding to sulfatides by sulfated polysaccharides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand factor, suggesting the involvement of laminin or thrombospondin, or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed on plastic promotes the attachment and spreading of some melanoma cells. Interestingly, fucoidan and an antibody against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment to thrombospondin-coated surfaces. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed on plastic also promote attachment and spreading of some cultured cell lines. Direct adhesion of melanoma cells requires high densities of adsorbed sulfatide. In the presence of laminin, however, specific adhesion of some cell types to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin is mediating adhesion by crosslinking receptors on the cell surface to sulfatide adsorbed on the plastic. Although thrombospondin also binds to sulfatides and to melanoma cells, it does not enhance but rather inhibits direct and laminin-dependent melanoma cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycolipids can participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.