Abstract

Novel compounds presenting anticoagulant activity, such as sulfated polysaccharides, open new perspectives in medicine. Elucidation of the molecular mechanism behind this activity is desirable by itself, as well as because it allows for the design of novel compounds. In the present study, we investigated the action of an algal sulfated galactan, which potentiates α-thrombin inactivation by antithrombin. Our results indicate the following: 1) both the sulfated galactan and heparin potentiate protease inactivation by antithrombin at similar molar concentrations, however they differ markedly in the molecular size required for their activities; 2) this galactan interacts predominantly with exosite II on α-thrombin and, similar to heparin, catalyzes the formation of a covalent complex between antithrombin and the protease; 3) the sulfated galactan has a higher affinity for α-thrombin than for antithrombin. We propose that the preferred pathway of sulfated galactan-induced inactivation of α-thrombin by antithrombin starts with the polysaccharide binding to the protease through a high-affinity interaction. Antithrombin is then added to the complex and the protease is inactivated by covalent interactions. Finally, the antithrombin–α-thrombin covalent complex dissociates from the polysaccharide chain. This mechanism resembles the action of heparin with low affinity for antithrombin, as opposed to heparin with high affinity for serpin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.