Abstract

The incorporation of oxyanion groups offers a greater potential for enhancing the activity of oxygen evolution reaction (OER) electrocatalysts compared to traditional metal cations doping, owing to their unique configurations and high electronegativity. However, the incorporation of oxyanion groups that differ from those derived from the oxidation of anions in transition metal monoxides poses significant challenges, thereby limiting further applications of oxyanion group modification approach. Herein, we present a novel sulfate salt assistant approach to fabricate Fe-doped Ni2P modified with SO42−/carbon (Fe-Ni2P-S/C) nanofibers as highly efficient OER electrocatalyst. The optimized Fe-Ni2P-S/C nanofibers display superb OER activity, requiring low overpotentials of 266, 323, and 357 mV at 100, 500, and 1000 mA cm−2, respectively. Theoretical calculations reveal that the co-adsorption of PO43− and SO42− on the surface of reconstructed electrocatalyst can reduce the energy barrier of rate-determining step, thereby resulting in enhanced OER activity. The present study emphasizes the crucial role played by anion groups in OER activity as well as proposes a novel approach for incorporating anion groups into electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.