Abstract

Persulfate (PS)-based advanced oxidation processes have aroused considerable attentions due to their higher efficiency and wider adaptability to the degradation of bio-recalcitrant organic contaminants. In this study, Cu-Fe layered doubled hydroxide (CuFe-LDH) was employed to degrade Methyl Violet (MV) through heterogeneous photo-activation of PS under visible-light irradiation. The reaction kinetics, degradation mechanism, catalyst stability were investigated in detail. Under the conditions of CuFe-LDH (3:1) dosage 0.2 g/L, PS concentration 0.2 g/L and without initial pH adjustment, 20 mg/L MV was almost completely degraded within 18 min. Electron Spin Resonance (ESR) test and radical quenching experiment indicated that sulfate radicals (SO4-) were the dominant reactive oxidants for the MV decolorization, while hydroxyl radicals (OH) were also involved. The CuFe-LDH/PS/Vis system was applicable at wide range of pH level (3–9). However, extreme pH level would lead to the reduction or transformation of SO4-. The catalyst CuFe-LDH exhibited excellent stability and maintained relatively high catalytic activity to PS even after four recycles. Mechanism study revealed that the redox cycle of Fe3+/Fe2+ and Cu2+/Cu3+ assisted by visible-light irradiation accounted for the enhanced generation of radicals in CuFe-LDH/PS/Vis system, resulting in the improved degradation of organic contaminants. Overall, the CuFe-LDH/PS/Vis process could be a promising approach for the removal of refractory organic pollutants in wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.