Abstract

Aerosol liquid water (ALW) can serve as an aqueous-phase medium for numerous chemical reactions and consequently enhance the formation of secondary aerosols in a highly humid atmosphere. However, the aqueous-phase formation of secondary organic aerosols (SOAs) is not well understood in the Indian regions, particularly in tropical peninsular India. In this study, we collected total suspended particulate samples (n = 30) at a semiarid station (Ballari; 15.15°N, 76.93°E; 495 m asl) in tropical peninsular India during the winter of 2016. Homologous series of dicarboxylic acids (C2–C12), oxoacids (ωC2–ωC9), pyruvic acid (Pyr), and glyoxal (Gly) were determined by employing a water-extraction of aerosol and analyzed using capillary gas chromatography (GC). Results show that oxalic acid (C2) was the most abundant organic acid, followed by succinic (C4), malonic (C3), azelaic (C9), and glyoxylic (ωC2) or phthalic (Ph) acids. Total diacids-C accounted for 1.7–5.8 % of water-soluble organic carbon (WSOC) and 0.6–3.6 % of total carbon (TC). ALW, estimated from the ISORROPIA 2.1 model, showed a strong linear relationship with sulfate (SO42−), C2, C3, C4, ωC2, Pyr, and Gly. Based on molecular distribution, specific mass ratios (C2/C3, C2/C4, C2/Gly, and Ph/C9), linear relationships among the measured organic acids, ALW, organic (levoglucosan and oleic acid), and inorganic (SO42−) marker compounds, we emphasize that diacids and related organic compounds, especially C2, majorly form via aqueous-phase oxidation of precursor compounds including aromatic hydrocarbons (HCs) and unsaturated fatty acids (FAs) originated from biomass burning and combustion-related sources. The present study demonstrates that sulfate driven ALW largely enhances the formation of SOAs via the aqueous-phase reactions over tropical peninsular India during winter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.