Abstract

Before the discovery of the Antarctic ozone hole, it was generally assumed that gas-phase chemical reactions controlled the abundance of stratospheric ozone. However, the massive springtime ozone losses over Antarctica first reported by Farman et al in 1985 could not be explained on the basis of gas-phase chemistry alone. In 1986, Solomon et al suggested that chemical reactions occurring on the surfaces of polar stratospheric clouds (PSCs) could be important for the observed ozone losses. Since that time, an explosion of laboratory, field, and theoretical research in heterogeneous atmospheric chemistry has occurred. Recent work has indicated that the most important heterogeneous reaction on PSCs is ClONO[sub 2] + HCl [yields] Cl[sub 2] + HNO[sub 3]. This reaction converts inert chlorine into photochemically active Cl[sub 2]. Photolysis of Cl[sub 2] then leads to chlorine radicals capable of destroying ozone through very efficient catalytic chain reactions. New observations during the second Airborne Arctic Stratospheric Expedition found stoichiometric loss of ClONO[sub 2] and HCl in air processed by PSCs in accordance with reaction 1. Attention is turning toward understanding what kinds of aerosols form in the stratospheric, their formation mechanism, surface area, and specific chemical reactivity. Some of the latest findings, which underlinemore » the importance of aerosols, were presented at a recent National Aeronautics and Space Administration workshop in Boulder, Colorado.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.