Abstract
Sulfane sulfur, including polysulfide and persulfide, is a newly identified cellular component present in microorganisms; however, its physiological functions are unclear. Streptomyces coelicolor M145 is a model strain of actinomycetes, which produces several polyketides, including actinorhodin. Herein, we found that both exogenously added and endogenously generated sulfane sulfur increased the actinorhodin production and accelerated spore formation of S. coelicolor M145. This bacterial species carries a natural gene circuit containing four genes that encode a CsoR-like transcription factor (ScCsoR), persulfide dioxygenase (ScPDO), rhodanese and a sulfite transporter, which were shown to be responsible for sensing and removal of excessive sulfane sulfur. ScCsoR was observed to bind to the promoters of the four genes, thus repressing their transcription. Sulfane sulfur modified Cys37 of ScCsoR, and the modified ScCSoR did not bind to the promoters, thereby activating the transcription of ScPDO. The deletion of ScCsoR decreased cellular sulfane sulfur, while the deletion of ScPDO increased its levels. The increased sulfane sulfur promoted actinorhodin production and sporulation. This study unveiled a natural gene circuit for maintaining sulfane sulfur homeostasis in bacteria. Further, we identified the trigger effect of sulfane sulfur on actinorhodin production, presenting a new approach for activating polyketide gene clusters in actinomycetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.