Abstract

The presence of antibiotic sulfadiazine (SFD) poses threats to the ecosystem and human health, and traditional wastewater treatment processes are not ideal for sulfadiazine removal. Therefore, it is urgent to develop treatment processes with high efficiency targeting sulfadiazine. This study investigated the degradation and mineralization mechanisms of SFD by ozone-based catalysis processes including ozone/persulfate (PS) and ozone/peroxymonosulfate (PMS). The degradation, mineralization and byproducts of SFD were monitored by HPLC, TOC and LC/MS, respectively. SFD was efficiently removed by two ozone-based catalysis processes. Ozone/PMS showed high efficiency for SFD removal of 97.5% after treatment for 1 min and TOC reduction of 29.4% after treatment for 20 min from wastewater effluents. SFD degradation was affected by pH, oxidant dosage, SFD concentration and anions. In the two ozone-based catalysis processes, hydroxyl radicals (OH•) and sulfate radicals (SO4•−) contributed to the degradation of SFD. The degradation pathways of SFD under the two processes included hydroxylation, the opening of the pyrimidine ring and SO2 extrusion. The results of this study demonstrate that the two ozone-based catalysis processes have good potential for the elimination of antibiotics from water/wastewater effluents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.