Abstract

A four‐terminal tandem structure based on the copper indium gallium selenide (CIGS) solar cell is a viable approach to achieve high efficiency. For this purpose, a dual‐junction configuration, consisting of the experimental CIGS cell with a record efficiency of 23.35% as the bottom cell and wide bandgap thin‐film solar absorbers as the top cell, is evaluated by modeling. Herein, the effects of luminescence efficiency, optical absorption, bandgap, thickness, and light trapping of the top cell on the designed tandem performance are investigated. The results show that the optimum bandgap and the thickness of the absorber layer for the top cell are between 1.7 and 2 eV and 0.5 μm, respectively. Light trapping for less than 1 μm‐thick top cell has a strong impact on cell performance. The analytical model for the tandem solar cell is provided to recognize the suitable materials as the partner for the CIGS cell. The analysis shows that the gallium arsenide (GaAs), copper zinc tin sulfide (CZTS), cadmium telluride (CdTe), and copper gallium selenide (CGS) thin‐film solar cells can be considered suitable top cells to achieve a tandem cell with more than 30% efficiency. The Al0.31Ga0.69As/CIGS tandem solar cells with 35.9% efficiency are also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.