Abstract

ABSTRACTHydrocarbons commonly contaminate aquifers and, in certain cases, can be successfully treated through biodegradation. Biodegradation is an effective technique for cleaning up pollution by enhancing pollutant‐degrading bacteria in situ. However, in situ sampling for monitoring processes occurring into the ground during the treatment is expensive and invasive. In this article, an alternative method was tested. Spectral Induced Polarization (SIP) was combined with gas analyses, CO2 concentration and its carbon isotopic ratio, to monitor toluene aerobic biodegradation in laboratory columns. Microbial activity was characterized by an evolution of the SIP response in correlation with a CO2 production with the same carbon isotope signature as toluene. The spectral induced polarization response followed the variations of bacterial activity and displayed a phase shift up to 15 mrad. These results support the feasibility of using geophysical measurements, supported by CO2 analyses, to monitor in situ hydrocarbon biodegradation, and they are proving to be highly promising for real field scale monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.