Abstract
Spatial rainfall interpolation requires a number of suitable validation samples to maintain accuracy. Generally, the larger the areas which can be predicted, the better the interpolation. In addition, the data used for validation should be separated from the modelling data. Moreover, the number of samples determine optimally proportion the independent sites. The objective of this study is to determine the optimal sample ratio for holdout validation in interpolation methods; the Makassar Strait was chosen as the study location because of its daily rainfall variation. The accuracy of the sample selection is tested using correlation, root mean square error (RMSE), mean absolute error (MAE) and the indicators of contingency tables. The results show that accuracy depends on the ratio of the modelling data. Therefore, the more extensive the data used for interpolation, the better the accuracy. Otherwise, if the rain gauge data is separated according to province, there will be a variation in accuracy in the portion of independent samples. For rainfall interpolation, it is recommended to use a minimum 75% of data sites to maintain accuracy. Comparison between kriging and inverse distance weighting or IDW methods indicates that IDW is better. Moreover, rainfall characteristics affect the accuracy and portion of the independent sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.