Abstract

Models predicting habitat distributions can give insight into species–habitat requirements and anticipate how populations respond to environmental change. Despite the economic and ecological importance of walleye (Sander vitreus) in Lake Erie, no preferred-habitat model exists and the spatial extent of suitable habitat is poorly understood. Empirical species-habitat models for three groups of walleye (juveniles, adults, and all walleye) was developed using records from a long term gill net data base (21years). We examined the degree to which habitat suitability varies with vertical stratum for each group and whether the new model yields different estimates of available walleye habitat when compared to the current depth-based approach. Walleye occurrence in gill nets was positively related to water temperature, negatively related to water depth and water clarity, and unrelated to dissolved oxygen concentration. A model that incorporated interaction terms among the independent variables performed better than the linear, quadratic, and cubic generalized linear models (GLMs) for all three groups. Our results indicate that the extent of suitable habitat varies spatially in Lake Erie and is greatest in the West basin. Weighted Habitat Suitability Areas (WHSA), a combination of habitat quality and quantity, differed significantly among basins and vertical strata in Lake Erie. The current quota allocation strategy for Lake Erie walleye is based on the proportional amount of preferred habitat by jurisdiction. However, the current depth-based definition of preferred habitat may not be an adequate representation of walleye suitable habitat shared by each jurisdiction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call