Abstract

A unique test chamber system, which enables experiments with plants under highly controlled environmental conditions, was used to examine the pollutant removal efficiency of plants. For this purpose, the removal of two different volatile organic compounds (VOC) (toluene, 2-ethylhexanol) from the air by aerial plant parts of two common indoor plant species (Dieffenbachia maculata and Spathiphyllum wallisii) was monitored. While the control over environmental conditions (temperature, relative humidity, CO2 content, and light condition) worked very well in all experiments, control experiments with the empty chamber revealed high losses of VOC, especially 2-ethylhexanol, over the test duration of 48 h. Nonetheless, compared to the empty chamber, a significantly stronger and more rapid decline in the toluene as well as in the 2-ethylhexanol concentrations was observed when plants were present in the chamber. Interestingly, almost the same VOC removal as by aerial plant parts could be achieved by potting soil without plants. A comparative literature survey revealed substantial heterogeneity in previous results concerning the VOC removal efficiency of plants. This can be mainly attributed to a high diversity in experimental setup. The experimental setup used in the current study offers an excellent opportunity to examine also plant physiological responses to pollutant exposure (or other stressors) under highly controlled conditions. For the analysis of VOC removal under typical indoor conditions, to obtain data for the assessment of realistic VOC removal efficiencies by plants in rooms and offices, a guideline would be helpful to achieve more coherent findings in this field of research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.