Abstract

Qualification of nuclear plant equipment and components can be performed by analysis, test, or a combination of both. It is often required to synthesize artificial time histories which represent earthquake excitation at either ground level, or some elevated level of a structure. A set of parameters appropriate for the synthesis of acceleration time histories is developed. The parameters are based on a study of six typical earthquake accelerograms, and include general characteristics of the motion, a definition of strong ground motion, frequency content, stationarity, coherence between orthogonal components, and amplitude probability density. It is concluded that the strong ground motion can be approximated by a stationary Gaussian random process, whose frequency content depends on the ground or elevated position of concern. Coherence between orthogonal components is low at ground level, but can become high at elevated structural levels due to coupled responses. Some examples are given for application of the parameters to qualification by testing, as a means of achieving better satisfaction of existing criteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.