Abstract

Alkaline-cooked corn, called nixtamal, is the basis for many traditional corn products such as tortillas, chips, and taco shells that are used widely in Mexico and Central America and in the preparation of snack foods that are consumed globally. To assess the effects of alkaline and thermal treatments on the detectability of DNA and protein for the presence of genetically modified sequences, various nixtamalized products were prepared from blends of conventional white corn containing 0.1, 1.0, and 10% transgenic corn (event CBH 351, StarLink). Real-time quantitative polymerase chain reactions (RTQ-PCR) and immunoassays were used to determine the cry9C gene and protein, respectively, in unprocessed corn kernels, freshly prepared alkaline-cooked and ground corn (masa), masa flour, tortillas prepared from masa by heat treatment, chips prepared from damp masa dough by deep frying, and from tortillas processed at high (200 degrees C) and low temperatures (70 degrees C). In spite of progressive degradation of genomic DNA during processing, RTQ-PCR genetic analysis allowed detection and quantification of the cry9C gene in all products prepared from 10, 1, and 0.1% StarLink corn, except deep-fried chips containing 0.1% StarLink. Enzyme-linked immunosorbent assays readily detected <1 ppm cry9C protein in all blends of unprocessed corn (10, 1, and 0.1% StarLink) as well as in nonfried tortilla and masa products. This technique was not suitable for thermally treated nixtamalized products containing <1% transgenic corn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call