Abstract

A requirement for the commercialization of power SiC transistors is their long term reliable operation under the hard-switching conditions and high temperatures encountered in the field. Normally ON 1200 V vertical-channel implanted-gate SiC junction field effect transistors (JFETs), designed for high-power bidirectional (four quadrant) solid-state-circuit-breaker (SSCB) applications, were repetitively pulse hard switched at 150 °C from a 1200 V blocking state to an ON-state current of 115 A, which is in excess of 13 times the JFET’s 250-W/cm2 rated current at 150 °C. The JFETs were fabricated in seven photolithographic levels with a single masked ion-implantation forming the p+ gates and guard rings, and with no epitaxial regrowth. The pulsed testing was performed using a low inductance $RLC$ circuit. In this circuit, energy initially stored in a capacitor is discharged in a load resistor through the JFET under test. The JFET hard-switch stressing included over 2.4 million 1200 V/115-A hard-switch events at 150 °C and at a repetition rate of 10 Hz. The peak energies and powers dissipated by the JFET at each hard-switch event were 73.2 mJ and 68.2 kW, respectively. The current rise rate was 166 A/ $\mu \text{s}$ and the pulse full width at half maximum (FWHM) was $1.8~\mu \text{s}$ . After over 2.4 million hard-switch events at 150 °C, the JFET blocking voltage characteristics remained unchanged while the ON-state conduction slightly improved, which indicate reliable operation. An optically triggered SSCB, based on these rugged JFET, is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.