Abstract

We provide further insight into the reproductive ecology and spawning requirements of lake trout. New comparative information about substrate characteristics, sediment transport, quality of interstitial water at spawning substrates, and the role of temperature in site selection and time of spawning is given for lakes Simcoe and Manitou (Ontario) and Seneca Lake (New York). Spawning lake trout commonly use stable lag deposits derived from glacial sediments, or relict features such as fans, bars or submerged talus slopes. Artificial breakwaters of broken material may also provide suitable substrates. Optimal particle sizes range from 4 to 10 cm diameter but larger materials to 30 cm are also successfully utilized for spawning. The transport of finer particulates by wind generated water movements may limit the suitability of some substrates and successful spawning sites are usually remote from depositional effects. Successful embryo development is associated with low nutrient conditions, with high dissolved oxygen (>7 mg L-1) and with low un-ionized ammonia (<12.5 μg L-1) in the interstitial water of spawning substrates. Shallow-water spawning appears to be the common strategy of colonizing lake trout. Some deepwater spawning in the Great Lakes may reflect initial colonization in shallow-water and adaptation to later increases in water level, but some may also reflect unique behavioural and physiological adaptations. Temperature is an important cue, and many wild and hatchery stocks spawn at 8 to 13 °C with latitudinal shifts in the actual time of spawning. These requirements are summarized as a dichotomous key for evaluation of approaches to restoration of lost or damaged lake trout stocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call