Abstract
Embedded liquid cooling is a preferred solution for dissipating the heat generated by high-power chips. The cooling capacity and pump power consumption of embedded liquid cooling heat sinks differ significantly between different structures. To achieve an accurate match between cooling capacity and heat dissipation requirements, the selection of a liquid-cooled heat sink should be carefully considered in conjunction with the heat dissipation needs of heat sources in real-world thermal management issues. Based on the manufacturing limitations on chip temperature and microchannel pressure, a composite performance index function was developed to assess the cooling capacity and cooling cost of the heat sink. This allowed for the establishment of an evaluation standard to determine the suitability of embedded liquid cooling and heat sink for the heat source. In this study, the suitability of four microchannel heat sinks with the same feature length and fin volume was evaluated under various thermal load conditions. The results show that the best-suited heat sink changes with variations in the thermal load of the chip. In the example, when the heat source was homogeneous at 100 W, the circular section pin fins have an optimal suitability of 0.928 for Re = 500. When the heat source was a heterogeneous heat source with a power of 100 W, the value of Θ was found to be 0.389. Additionally, the optimal suitability of drop section pin fins for Re = 971.5 was determined to be 0.862.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.