Abstract

The most commonly employed technology for cold production is vapour compression, mainly due to the high efficiency of such devices. However, a major operating issue is the strong dependency of system efficiency and capacity on ambient temperature, which in turn leads to low yearly performance and to a low capacity factor.On the other hand, solar cooling is gaining an increasing appeal as a way to locally exploit renewable energy sources and reducing carbon footprint. Many thermally driven systems are being currently studied, among these the ejection reverse cycle is being proposed as an interesting alternative due to its simplicity, low cost and reliability.The present paper aims to analyse a complex system in which the solar powered ejection machine is used to increase the efficiency of a traditional vapour compression machine by subtracting heat from the condenser. By means of a transient analysis, performed with a reference building and with climate data corresponding to four different system locations worldwide, the year-round performance of such a system in a space cooling application is estimated in terms of energy balance and savings on power costs with respect to the traditional solutions, in order to evaluate its potential benefits and to highlight some issues related to system design and operation. A sensitivity analysis is also performed with respect to solar collector area and equipment sizing, showing how the latter is an important optimisation parameter when designing the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.