Abstract
Multifilamentary NbTi wires for ac applications are manufactured by embedding filament bundles into a metal matrix. In this stage of the manufacturing process, it is possible to affect the layout of the cross section and to choose whether to use few large or many small bundles in order to achieve a certain amount of filaments. All in all, up to 100 000 filaments are attainable for wire having the diameter of 1 mm. In this paper, ac loss measurements in external magnetic field on differently stacked NbTi samples are described. The measurements were performed in a LHe-cooled cryostat. The amplitude of the external field was varied between 250 mT and 3 T at frequencies of 0.02 and 0.12 Hz. We discuss possibilities to simulate the losses with finite element method. In particular, we concentrate on the filament bundle approximation and the possibilities to exploit it in the research and development process of new NbTi wires. In this approach, the filament bundles are considered as a homogenous mixture of matrix and superconducting filaments. According to the results, the bundle approximation greatly overestimates the losses. Furthermore, it should not be used for comparing, e.g., two wire structures where one has bundles of different size than the other. However, when considering how to situate the bundles on the cross section to achieve minimal ac loss, the bundle approximation can be a useful tool
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.