Abstract

Suicide is a leading cause of death. A substantial proportion of the people who die by suicide come into contact with the health care system in the year before their death. This observation has resulted in the development of numerous suicide prediction tools to help target patients for preventive interventions. However, low sensitivity and low positive predictive value have led critics to argue that these tools have no clinical value. We review these tools and critiques here. We conclude that existing tools are suboptimal and that improvements, if they can be made, will require developers to work with more comprehensive predictor sets, staged screening designs, and advanced statistical analysis methods. We also conclude that although existing suicide prediction tools currently have little clinical value, and in some cases might do more harm than good, an even-handed assessment of the potential value of refined tools of this sort cannot currently be made because such an assessment would depend on evidence that currently does not exist about the effectiveness of preventive interventions. We argue that the only way to resolve this uncertainty is to link future efforts to develop or evaluate suicide prediction tools with concrete questions about specific clinical decisions aimed at reducing suicides and to evaluate the clinical value of these tools in terms of net benefit rather than sensitivity or positive predictive value. We also argue for a focus on the development of individualized treatment rules to help select the right suicide-focused treatments for the right patients at the right times. Challenges will exist in doing this because of the rarity of suicide even among patients considered high-risk, but we offer practical suggestions for how these challenges can be addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.