Abstract

Conventional eukaryotic expression plasmids contain a DNA backbone that is dispensable for the cellular expression of the transgene. In order to reduce the vector size, minicircle DNA technology was introduced. A drawback of the minicircle technology are considerable production costs. Nanoplasmids are a relatively new class of mini-DNA constructs that are of tremendous potential for pharmaceutical applications. In this study we have designed novel suicide nanoplasmid constructs coding for plant derived ribosome-inactivating proteins. The suicide-nanoplasmids were formulated with a targeted K16-lysine domain, analyzed for size, and characterized by electron microscopy. The anti-proliferative activity of the suicide-nanoplasmids was investigated in vitro by real time microscopy and the expression kinetic was determined using an enhanced green fluorescent protein nanoplasmid variant. In an aggressive in vivo neuroblastoma tumor model, treated mice showed a reduced tumor growth whereby the therapy was well tolerated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.