Abstract

Pathogenic variants in HFE and non-HFE genes have been identified in hemochromatosis in different patient populations, but there are still a certain number of patients with unexplained primary iron overload. We recently identified in Chinese patients a recurrent p.(Arg639Gln) variant in SURP and G-patch domain containing 2 (SUGP2), a potential mRNA splicing-related factor. However, the target gene of SUGP2 and affected iron-regulating pathway remains unknown. We aimed to investigate the pathogenicity and underlying mechanism of this variant in hemochromatosis. RNA-seq analysis revealed that SUGP2 knockdown caused abnormal alternative splicing of CIRBP pre-mRNA, resulting in an increased normal splicing form of CIRBP V1, which in turn increasedthe expression of BMPER by enhancing its mRNA stability and translation. Furthermore, RNA-protein pull-down and RNA immunoprecipitation assays revealed that SUGP2 inhibited splicing of CIRBP pre-mRNA by a splice site variant at CIRBP c.492 and was more susceptible to CIRBP c.492 C/C genotype. Cells transfected with SUGP2 p.(Arg639Gln) vector showed up-regulation of CIRBP V1 and BMPER expression and down-regulation of pSMAD1/5 and HAMP expression. CRISPR-Cas9 mediated SUGP2 p.(Arg622Gln) knock-in mice showed increased iron accumulation in the liver, higher total serum iron, and decreased serum hepcidin level. A total of 10 of 54 patients with hemochromatosis (18.5%) harbored the SUGP2 p.(Arg639Gln) variant and carried CIRBP c.492 C/C genotype, and had increased BMPER expression in the liver. Altogether, the SUGP2 p.(Arg639Gln) variant down-regulates hepcidin expression through the SUGP2/CIRBP/BMPER axis, which may represent a novel pathogenic factor for hemochromatosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call