Abstract

Bluetooth sensors in intelligent transportation systems possess extensive coverage and access to a large number of identity (ID) data, but they cannot distinguish between vehicles and persons. This study aims to classify and differentiate raw data collected from Bluetooth sensors positioned between various origin-destination (i-j) points into vehicles and persons and to determine their distribution ratios. To reduce data noise, two different filtering algorithms are proposed. The first algorithm employs time series simplification based on Simple Moving Average (SMA) and threshold models, which are tools of statistical analysis. The second algorithm is rule-based, using speed data of Bluetooth devices derived from sensor data to provide a simplification algorithm. The study area was the Historic Peninsula Traffic Cord Region of Istanbul, utilizing data from 39 sensors in the region. As a result of time-based filtering, the ratio of person ID addresses for Bluetooth devices participating in circulation in the region was found to be 65.57% (397,799 person IDs), while the ratio of vehicle ID addresses was 34.43% (208,941 vehicle IDs). In contrast, the rule-based algorithm based on speed data found that the ratio of vehicle ID addresses was 35.82% (389,392 vehicle IDs), while the ratio of person ID addresses was 64.17% (217,348 person IDs). The Jaccard similarity coefficient was utilized to identify similarities in the data obtained from the applied filtering approaches, yielding a coefficient (J) of 0.628. The identity addresses of the vehicles common throughout the two date sets which are obtained represent the sampling size for traffic measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.