Abstract

1. The short-circuit current of everted rat intestine supported on a perforated cannula proved to be stable for up to 3 hr and has been used to study competition between transportable and non-transportable sugars. 2. 4,6-O-Ethylidene-alpha-D-glucopyranose (ethylidene glucose) and 4,6-O-benzylidene-e alpha-D-glucopyranos (benzylinene glucose), two nontransportable inhibitors of the hexose transfer system in human erythrocytes, were found to reduce the short-circuit current generated by transportable sugars such as galactose or 3-O-methyl glucose. 3. These compounds were also found to reduce the basal short-circuit current established by the everted intestine in a sugar-free Krebs solution. Both types of inhibition approached saturation at the higher concentrations used. 4. Similar inhibitory properties were shown by mannose, a non-actively accumulated monosaccharide, and by the beta-disaccharides lactose and cellobiose. 5. It is suggested that this common pattern of behaviour is due to the ability of these compounds to react with the sites for active hexose transfer but without translocation by the system. The significance of the inhibition of the basal short-circuit current is briefly discussed in this context.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call