Abstract
Lignocellulosic plant cell wall is considered a potential source for second generation biofuels. The plant cell wall is a highly complex structure mainly composed of cellulose, hemicelluloses, and lignin that form a network of crosslinked fibers. The structural organization of the sugarcane cell wall has not been previously analyzed in detail, and this analysis is a prerequisite for further studies on the recalcitrance and deconstruction of its biomass. In this work, cellulose and lignin localization were investigated by confocal laser scanning microscopy. In addition, the internode sugarcane cell wall structural organization was analyzed by electron microscopy. Internode stem anatomy showed a typical monocot structure consisting of epidermis, hypoderm, and vascular bundles scattered throughout ground parenchyma tissue and surrounded by sclerenchyma fibers. Confocal images of safranin labeled sugarcane showed that lignin distribution was predominant in the vessel elements, cell wall corners (CC), and middle lamella (ML), while cellulose-rich cell walls were randomly distributed in the ML and organized in the other cell wall layers. KMnO4 cytochemistry revealed that lignin was predominantly distributed in secondary cell walls, ML and CC. Cell wall sublayers (S1, S2, and S3) were identified and measured by transmission electron microscopy. Our results provide insights that may help further understanding of sugarcane cell wall organization, which is crucial for the research and technology of plant-based biofuel production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.