Abstract

Many hyperthermophilic microorganisms show heterotrophic growth on a variety of carbohydrates. There has been considerable fundamental and applied interest in the utilization of glucose and its alpha- and beta-polymers by hyperthermophiles. While glycolysis by Bacteria at high temperatures shows conventional characteristics, it has been found that glucose catabolism by hyperthermophilic Archaea differs from the canonical glycolytic pathways, involves novel enzymes, and shows a unique control. This review addresses these aspects with specific attention to Pyrococcus furiosus, which is one of the best studied hyperthermophilic Archaea, has the capacity to grow on a variety of sugars including the marine beta-(1,3)-linked glucose polymer laminarin, and has been found to contain three novel glycolytic enzymes, two ADP-dependent kinases, and a ferredoxin-dependent glyceraldehyde-3-phosphate oxidoreductase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call