Abstract

We have previously reported that the chitin catabolic cascade in Vibrio furnissii involves multiple signal transducing systems, and that mono- and disaccharide chemoreceptors/transporters are essential components of some of these systems. This and the accompanying papers (Bouma, C. L., and Roseman, S. (1996) J. Biol. Chem 271, 33457-33467; Keyhani, N. O., Wang, L.-X., Lee, Y. C., and Roseman, S. (1996) J. Biol. Chem. 271, 33409-33413) describe some of the sugar transporters. A 13-kilobase pair fragment of V. furnissii DNA was found to impart a Glc+, Man+ phenotype to Escherichia coli ptsG ptsM mutants, and encodes the mannose transporter, ptsM, of the phosphoenolpyruvate:glycose phosphotransferase system. Unlike the E. coli mannose permease, V. furnissii IIMan is inactive with GlcNAc and Fru, and is encoded by four genes rather than three. The gene order is manXYZW, where the product of manY corresponds to IIPMan, manZ to the mannose receptor IIBMan, and manX and manW to the single E. coli gene, manX (which encodes IIIMan, viz. IIAMan). Thus, in V. furnissii, the E. coli manX equivalent comprises two genes, which are separated in the genome by two other genes of the ptsM complex. Two additional open reading frames were detected in the V. furnissii DNA fragment. One encodes a GlcNAc-6-P deacetylase, and the other is similar to aldolase.

Highlights

  • We have previously reported that the chitin catabolic cascade in Vibrio furnissii involves multiple signal transducing systems, and that mono- and disaccharide chemoreceptors/transporters are essential components of some of these systems

  • We report here that V. furnissii ptsM differs from its E. coli homolog in the number of polypeptides required for its function, the gene order, and in its substrate specificity

  • Restriction fragments of the plasmid p3H1 were subcloned to determine the minimum size of V. furnissii DNA that would complement the GlcϪ defect in E. coli SR423, and a 5.1-kb SalI fragment met this requirement

Read more

Summary

Introduction

We have previously reported that the chitin catabolic cascade in Vibrio furnissii involves multiple signal transducing systems, and that mono- and disaccharide chemoreceptors/transporters are essential components of some of these systems. A 13kilobase pair fragment of V. furnissii DNA was found to impart a Glc؉, Man؉ phenotype to Escherichia coli ptsG ptsM mutants, and encodes the mannose transporter, ptsM, of the phosphoenolpyruvate:glycose phosphotransferase system. Unlike the E. coli mannose permease, V. furnissii IIMan is inactive with GlcNAc and Fru, and is encoded by four genes rather than three. We report here that V. furnissii ptsM differs from its E. coli homolog in the number of polypeptides required for its function, the gene order, and in its substrate specificity

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.