Abstract

Enzyme I is the first protein of the phospho transfer sequence in the bacterial phosphoenolpyruvate:glycose phosphotransferase system. This protein exhibits a temperature-dependent monomer/dimer equilibrium. The nucleotide sequence of Escherichia coli ptsI indicates four -SH residues per subunit (Saffen, D. W., Presper, K. A., Doering, T. L., and Roseman, S. (1987) J. Biol. Chem. 262, 16241-16253). In the present experiments, the sulfhydryl groups of the E. coli enzyme were studied with various -SH-specific reagents. Titration of Enzyme I with 5,5'-dithiobis-2-nitrobenzoic acid also revealed four reacting -SH groups. The kinetics of the 5,5'-dithiobis-2-nitrobenzoic acid reaction with Enzyme I exhibit biphasic character, with pseudo-first order rate constants of 2.3 x 10(-2)/s and 2.3 x 10(-3)/s at pH 7.5, at room temperature. Fractional amplitudes associated with the rate constants were 25 +/- 5% for the fast and 75 +/- 5% for the slow rate. The "slow" rate was influenced by ligands that react with Enzyme I (the protein HPr, Mg2+, Mg2+ plus P-enolpyruvate), and also by temperature (at the temperature range where the monomer/dimer association occurs). The fractional ratio of the two rates remained at 1:3 under these conditions. Thus, under all conditions tested, two classes of -SH groups were detected, one reacting more rapidly than the other three -SH groups. Modification of the "fast" -SH group results in an active enzyme capable of forming dimer, whereas modification of the slow -SH groups results in inactive and monomeric Enzyme I. The enzyme was labeled with pyrene maleimide under conditions where only the more reactive sulfhydryl group was derivatized. Hydrolysis by trypsin followed by reverse-phase high performance liquid chromatography analysis of the peptide mixture resulted in only one fluorescent peak. This peak was not observed when the more reactive sulfhydryl residue was protected prior to pyrene maleimide labeling. Amino acid sequencing of the fluorescent peak indicated that the more reactive residue is the C-terminal amino acid residue, cysteine 575. The results provide a means for selectively labeling Enzyme I with a fluorophore at a single site while retaining full catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.