Abstract

To clarify the complex regulatory relationship between changes in sugar content and leaf senescence during the grain-filling stage of rice, genotype-dependent differences in sugar content and the temporal transcriptional patterns of genes involved in sugar signaling pathways were determined in mutant rice exhibiting early leaf senescence and its wild type Zhefu 142. The effects of exogenous glucose or sucrose on the senescence of detached leaves under dark conditions were also investigated. Chlorophyll, soluble sugar, sucrose and fructose contents decreased, whereas electrolytic leakage and malondialdehyde levels increased in mutant leaves at the grain-filling stage. These results suggested that sugar starvation is positively correlated with the early leaf senescence of mutant plants. Detached leaf segments incubated in exogenous sugar solutions under dark conditions exhibited delayed senescence. The high expression of Hxk1 in leaves of mutant plants at the initial grain-filling stage suggested that Hxk1 is involved in the hexose-sensing process at the early stage of leaf senescence. The low expression levels of Hxk2 and Frk1 in the senescing leaves of mutant rice during the grain-filling stage are indicative of weakened hexose phosphorylation. In addition, the high expression levels of SuSy1, SuSy2 and SuSy4 in leaves of mutant plants at the initial grain-filling stage are accompanied by the high transcript levels of SUT1, which favor sucrose translocation and remobilization from the early senescing leaves of mutant rice. The relatively reduced transcript levels of chFBP, cyFBP, SPS1, SPS2 and SPS6 indicated that during the grain-filling stage, sucrose biosynthesis is weakened in the senescing leaves of mutant rice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.