Abstract
Enterobacteria display a high level of flexibility in their fermentative metabolism. Biotyping assays have thus been developed to discriminate between clinical isolates. Each biotype uses one or more sugars more efficiently than the others. Recent studies show links between sugar metabolism and virulence in enterobacteria. In particular, mechanisms of carbohydrate utilization differ substantially between pathogenic and commensal E. coli strains. We are now starting to gain insight into the importance of this variability in metabolic function. Studies using various animal models of intestinal colonization showed that the presence of the fos and deoK loci involved in the metabolism of short-chain fructoligosaccharides and deoxyribose, respectively, help avian and human pathogenic E. coli to outcompete with the normal flora and colonize the intestine. Both PTS and non-PTS sugar transporters have been found to modulate virulence of extraintestinal pathogenic E. coli strains. The vpe, GimA, and aec35-37 loci contribute to bacterial virulence in vivo during experimental septicemia and urinary tract infection, meningitis, and colibacillosis, respectively. However, in most cases, the sugars metabolized, and the precise role of their utilization in the expression of bacterial virulence is still unknown. The massive development of powerful analytical methods over recent years will allow establishing the knowledge of the metabolic basis of bacterial pathogenesis that appears to be the next challenge in the field of infectious diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.