Abstract

In this article, mid-infrared Fourier transform (Mid-FT-IR) and carbon thirteen nuclear magnetic resonance (13C NMR) spectroscopy have been used to determine possible interactions between sucrose and various alkali or alkaline earth metals in aqueous solution. In the presence of these metals, significant shifts in the absorption bands of sucrose were noted by mid-FT-IR coupled with principal component analysis (PCA). These shifts were explained on the basis of weakening of the H-bond network between sucrose and water and possible interactions between sucrose and the metal ion. Factorial maps were established and the spectral patterns obtained show that these interactions vary according to the nature of the metal ion. 13C NMR analysis showed that the carbon atoms of sucrose undergo shielding or deshielding in the presence of metal ions in aqueous solutions. Two factors were invoked to account for the variation of chemical shifts: the rupture of hydrogen bonds due to hydration of the metal ion and the possible coordination of the metal ion to the oxygen atoms of sucrose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call