Abstract

Temperature cycling across the glass transition of the aqueous phase of oil-in-water emulsions stabilized by whey protein isolate was considered as a possible factor affecting stability. Emulsions were formulated with an aqueous phase containing 80% (w/w) fructose, fructose:glucose 1:1 or glucose, in order to prepare a glass forming aqueous phase with sugar concentration corresponding to that of the unfrozen phase of the maximally freeze-concentrated solutions. This allowed thermal cycling across the glass transition in the absence of the formation of ice crystals. Emulsion stability was studied using differential scanning calorimetry, dynamic light scattering and by visual analysis of the morphology of the systems. Emulsified systems undergoing glass transition cycles of the aqueous phase did not show destabilization of the dispersed (crystallized) lipid phase. Sugar crystallization in the aqueous phase, which occurred when glucose systems were stored above the Tg, led to emulsion breakdown. In this study, the formation of a glassy structure in the continuous aqueous phase preserved the interfacial structure of WPI, thus protecting the dispersed lipid phase from destabilization. On the contrary, glucose crystallization caused disruption of the interfacial membrane structure and loss of integrity of the interface which resulted in extensive lipid phase destabilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.