Abstract

Both endocytic uptake and viral fusion can lead to human immunodeficiency virus type 1 (HIV-1) transfer to CD4+ lymphocytes, either through directional regurgitation (infectious transfer in trans [I-IT]) or through de novo viral production in dendritic cells (DCs) resulting in a second-phase transfer to CD4+ lymphocytes (infectious second-phase transfer [I-SPT]). We have evaluated in immature monocyte-derived DCs both pathways of transfer with regard to their susceptibilities to being blocked by potential microbicidal compounds, including cyanovirin (CNV); the plant lectins Hippeastrum hybrid agglutinin, Galanthus nivalis agglutinin, Urtica dioica agglutinin, and Cymbidium hybrid agglutinin; and the glycan mannan. I-IT was a relatively inefficient means of viral transfer compared to I-SPT at both high and low levels of the viral inoculum. CNV was able to completely block I-IT at 15 microg/ml. All other compounds except mannan could inhibit I-IT by at least 90% when used at doses of 15 microg/ml. In contrast, efficient inhibition of I-SPT was remarkably harder to achieve, as 50% effective concentration levels for plant lectins and CNV to suppress this mode of HIV-1 transfer increased significantly. Thus, our findings indicate that I-SPT may be more elusive to targeting by antiviral drugs and stress the need for drugs affecting the pronounced inhibition of the infection of DCs by HIV-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.