Abstract

Metabolites can mediate species interactions and the assembly of microbial communities. However, how these chemicals relate to the assembly processes and co-occurrence patterns of diazotrophic assemblages in root-associated soils remains largely unknown. Here, we examined the diversity and assembly of diazotrophic communities and further deciphered their links with metabolites on Tibetan Plateau. We found that the distribution of sugars and organic acids in the root-associated soils was significantly correlated with the richness of diazotrophs. The presence of these two soil metabolites explains the variability in diazotrophic community compositions. The differential concentrations of these metabolites were significantly linked with the distinctive abundances of diazotrophic taxa in same land types dominated by different plants or dissimilar soils by same plants. The assembly of diazotrophic communities is subject to deterministic ecological processes, which are widely modulated by the variety and amount of sugars and organic acids. Organic acids, for instance, 3-(4-hydroxyphenyl)propionic acid and citric acid, were effective predictors of the characteristics of diazotrophic assemblages across desert habitats. Diazotrophic co-occurrence networks tended to be more complex and connected within different land types covered by the same plant species. The concentrations of multiple sugars and organic acids were coupled significantly with the distribution of keystone species, such as Azotobacter, Azospirillum, Bradyrhizobium, and Mesorhizobium, in the co-occurrence network. These findings provide new insights into the assembly mechanisms of root-associated diazotrophic communities across the desert ecosystems of the Tibetan Plateau.Key points• Soil metabolites were significantly linked to the diversity of diazotrophic community.• Soil metabolites determined the assembly of diazotrophic community.• Sugars and organic acids were coupled mainly with keystone species in networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.