Abstract

Mechanisms of sugar accumulation in response to drought stress in Satsuma mandarin (Citrus unshiu Marc.) fruit were investigated. Predawn leaf water potentials averaged -0.35MPa for well-watered, -0.60 MPa for moderately drought-stressed, and -1.00 MPa for severely drought-stressed glasshouse-grown 3-year-old trees. Fruit peel turgor and fruit growth of the moderately drought-stressed trees recovered to a similar value to that of the well-watered trees. Photosynthetic rates and stomatal conductance of both moderately and severely drought-stressed trees were significantly lower than those of the well-watered plants. However, the total sugar content per fruit of moderately drought-stressed trees was the highest among the drought treatments. A 13C-labeling experiment showed that 13C distribution in fruit grown under the moderately drought-stressed condition was the highest. These findings indicate that sugar accumulation in fruit was caused by an increase in translocation of photosynthates into fruit, especially into the juice sacs, under drought stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.