Abstract

A fundamental problem in Bayesian nonparametrics consists of selecting a prior distribution by assuming that the corresponding predictive probabilities obey certain properties. An early discussion of such a problem, although in a parametric framework, dates back to the seminal work by English philosopher W. E. Johnson, who introduced a noteworthy characterization for the predictive probabilities of the symmetric Dirichlet prior distribution. This is typically referred to as Johnson’s “sufficientness” postulate. In this paper, we review some nonparametric generalizations of Johnson’s postulate for a class of nonparametric priors known as species sampling models. In particular, we revisit and discuss the “sufficientness” postulate for the two parameter Poisson–Dirichlet prior within the more general framework of Gibbs-type priors and their hierarchical generalizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.