Abstract
The finite state semi-Markov process is a generalization over the Markov chain in which the sojourn time distribution is any general distribution. In this article, we provide a sufficient stochastic maximum principle for the optimal control of a semi-Markov modulated jump-diffusion process in which the drift, diffusion, and the jump kernel of the jump-diffusion process is modulated by a semi-Markov process. We also connect the sufficient stochastic maximum principle with the dynamic programming equation. We apply our results to finite horizon risk-sensitive control portfolio optimization problem and to a quadratic loss minimization problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.