Abstract

The robust stability of a class of feedback linearizable minimum-phase nonlinear system, having parametric uncertainties, is investigated in this study. The system in new coordinates is represented to an equivalent formulation after the attempt of feedback linearization. Due to the parametric uncertainties the approximately linearized system entails a norm bounded input nonlinearity such that the equilibrium point condition in error dynamics can not be satisfied. Accordingly, to guarantee the regional asymptotic stability a control synthesis problem is proposed by means of sufficient Linear Matrix Inequalities (LMIs) together with an amended nonlinear control term, derived from the Lyapunov redesign method, which tackles zero steady-state error condition. The numerical examples of a general aviation aircraft's longitudinal dynamics and inverted pendulum are simulated to show the proficiency of the proposed control technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.