Abstract

Let B Y denote the unit ball of a normed linear space Y. A symmetric, bounded, closed, convex set A in a finite-dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y, there exists a linear projection P : Y → X such that P ( B Y ) ⊂ A . The main results of the paper: (1) Each minimal-volume sufficient enlargement is linearly equivalent to a zonotope spanned by multiples of columns of a totally unimodular matrix. (2) If a finite-dimensional normed linear space has a minimal-volume sufficient enlargement which is not a parallelepiped, then it contains a two-dimensional subspace whose unit ball is linearly equivalent to a regular hexagon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.